Биполярный транзистор

 

Раздел Техническая информация → Транзисторы

Биполярные транзисторы

 

Сырьем для транзисторов может служить обычный песок. Не вериться? Песок представляет собой окись кремния SiO2.
Кремний является основой для производства подавляющего большинства полупроводниковых элементов электроники. Разумеется, нужны и другие материалы: пластмасса, керамика, алюминий, серебро и даже золото. Разрезать аккуратно и точно кремниевую пластинку лучше всего алмазной пилой.
Но вернемся к окиси кремния. Кремний из окиси можно восстановить химической переработкой. Чистый кремний относится к классу полупроводников. Кратко вспомним, что такое полупроводник и чем он отличается от проводника или диэлектрика.
Электрический проводник-это вещество, оказывающее малое сопротивление протекающему через него току. Электрический ток, в свою очередь, есть направленное движение электрических зарядов. Значит, в проводнике должны быть свободные заряды, которые могут легко передвигаться в любом направлении. Все металлы -хорошие проводники. В металлах внешние электроны атомов становятся свободными, когда атомы объединяются в кристаллическую решетку.

 

хаотическое тепловое движение электронов

Свободные электроны образуют так называемый электронный газ, заполняющий весь объем металла. Если в проводнике течет ток, электроны перемещаются преимущественно в одном направлении. Если же тока нет, электроны все равно движутся, но это движение хаотическое, тепловое. Оно создает шум-небольшое, случайным образом изменяющееся напряжение на выводах проводника или полупроводникового элемента.
Из самого названия «полупроводник» ясно, что он еще «не дорос» до настоящего проводника и, следовательно, проводит ток гораздо хуже. Свободных электронов в полупроводнике мало, поскольку почта все электроны как бы привязаны к своим атомам. Правда, при сильном нагреве тепловое движение становится интенсивнее и некоторые из электронов отрываются от своих атомов, становясь свободными. Проводимость вещества при этом увеличивается. Вот почему полупроводниковые приборы очень боятся перегрева-проводимость может возрасти настолько, что ток в полупроводнике резко увеличится и наступит так называемый тепловой пробой. Чтобы не углубляться, посмотрим лишь несколько цифр.
Удельное сопротивление вещества-величина, обратная проводимости,-измеряется в омах на метр (Ом-м). Это сопротивление бруска вещества сечением 1 м2 и длиной 1 м. Вот это брусочек! Но что поделаешь, в международной системе единиц СИ единицей длины служит метр. Ну так вот: сопротивление медного бруска составляет всего 0,017·10-6 Ом. А сопротивление бруска тех же размеров, изготовленного из такого типичного диэлектрика, как стекло, равно 5·1013Ом, т.е. на двадцать один порядок (1021) больше! Удельное сопротивление полупроводников находится где-то между этими крайними значениями. Дать конкретные величины трудно, они зависят от вида вещества, его чистоты и других факторов.
Чем чище полупроводник, тем ближе его свойства к свойствам диэлектрика. Но если в полупроводник введена примесь, то проводимость резко возрастает.

Различают два вида примесей: акцепторные и донорные.
Валентность вещества акцепторной примеси меньше, чем валентность самого полупроводника. Это значит, что во внешнем электронном слое атомов примеси меньше электронов, чем у атомов полупроводника. В этом случае примесь по отношению к электронам атомов полупроводника ведет себя как агрессор: она захватывает их. В результате в кристаллической решетке вещества появляются атомы, которым не хватает одного электрона.

акцепторная примесь р-n-переход

Заряд этих атомов положителен. Они притягивают отрицательно заряженные электроны, и при первой же возможности атом, у которого не хватает электрона, захватывает его у соседнего атома. Положительный заряд при этом перемещается к соседнему атому. Тот, в свою очередь, захватывает электрон у соседа. Таким образом, положительный заряд перемещается еще дальше. Теперь оказалось, что в толще полупроводника с акцепторной примесью «гуляет сам по себе» положительный заряд, обусловленный нехваткой одного электрона. Заряд этот очень образно называют «дыркой».
Иное дело, если в полупроводник введена донорная примесь.
Валентность вещества примеси на единицу больше валентности самого полупроводника. Это значит, что во внешней электронной оболочке атомов вещества примеси на один электрон больше, чем у атомов полупроводника. Объединяясь в кристаллы, атомы примеси используют для валентных связей все внешние электроны, кроме одного. В образовавшемся кристалле «лишние» электроны атомов примеси оказываются без работы. «Безработные» электроны свободно перемещаются по всему кристаллу, но все рабочие места-валентные связи-заняты. Эти электроны легко устремляются по направлению даже слабого электрического поля, создавая электрический ток.

дырочная проводимость р-n-переход

Таким образом, вводя различные примеси, мы можем получить полупроводник с дырочной проводимостью (р-типа) и с электронной проводимостью (n-типа). Сами названия р и n произошли от начальных букв английских слов positive и negative, обозначающих знак свободных зарядов (положительный - "дырочный" или отрицательный - "электронный"). Чем выше концентрация примеси в полупроводнике, тем выше и его проводимость. Как только физики и инженеры научились получать полупроводники с различными типами проводимости, тут же появились и приборы, выполненные на их основе.

Биполярный транзистор

Значение "Би" означает, что имеется два основными носителями которыми являются электроны и дырки. По способу чередования областей различают npn и pnp транзисторы.
Обозначение биполярного транзистора на схеме.
Обозначение биполярного транзистора
Принцип работы биполярного транзистора можно объяснить, опираясь на те же явления, которые наблюдаются в рп-выпрямителе. У npn-транзистора одна n-область находится в контакте с р-областью, а та в свою очередь контактирует со второй n-областью (рис.).
Расположение переходов в транзисторе
Главным здесь, как мы сейчас видим, является то, что средняя р-область очень узка и относительно слабо легирована, рпр-транзистор получается заменой в npn-транзисторе р и n областей. На практике применяются транзисторы обоих видов; функции их схожи, но в pnp-транзисторе носителями заряда в основном являются дырки, а в npn-транзисторе - электроны. Так как в кремнии электроны обладают большей подвижностью, чем дырки, то в большинстве случаев кремниевые pnp-транзисторы превосходят pnp-транзисторы. Чтобы рассмотреть принцип действия прп-транзистора, обратимся еще раз к рис.
Транзистор биполярный
В таком транзисторе есть два p-n-перехода, т.е. n-p-переход слева и p-n-переход справа. Приложим положительное высокое напряжение Uк к правой n-области и отрицательное напряжение UЕ к левой n-области. Пусть на p-область действует напряжение Vв, которое больше Ue, но меньше Uk. В результате на левом n-p -переходе мы имеем прямое смещение (пропускное направление), а на правом p-n-переходе -обратное смещение (запирающее направление). Электроны из инжектирующей левой n-области, называемой эмиттером, диффундируют в р-область, где в нормальном случае они бы рекомбиннровали, если бы p-область, т. е. так называемая база, не была настолько узкой, что электроны успевают проскочить через нее не рекомбинируя. Таким образом удается добиться того, чтобы электроны попали в правую n-область и там поступали на электрод. Поэтому правую n-область называют коллектором. Он собирает инжектированные из левой n-области - эмиттера - электроны.
Различные роли обеих n-областей, которые без приложенного к ним напряжения совершенно равноправны, конечно же, являются следствием того, что к правой n-области приложено положительное напряжение, а к левой - отрицательное. Соединим теперь базу через источник напряжения и проводник с эмиттером, как это показано на рис. Мы получим две цепи тока -базовую и коллекторную. В базовой цепи в ток вносят вклад лишь те электроны, которые, как мы видели в случае с прямосмещенным переходом (в пропускном направлении), рекомбинируют в p-области. Но из-за узости p-области их очень мало. Следовательно, выходящий из базы поток электронов очень невелик. Большая часть тока, поступающего с эмиттера, течет через коллектор (рис.).
Транзистор биполярный
Однако мы знаем, что в ток через р-n-переход вносят вклад не только электроны, но и дырки. В нашем конкретном случае это означает, что из базы в эмиттер поступает поток дырок.
Он существенно превысил бы сравнительно слабый поток электронов и стал бы причиной появления в целом относительно сильного тока в базовой цепи, если бы его не удалось уменьшить каким-либо способом. В биполярном транзисторе с этой целью слабо легируют базу. В результате концентрация дырок в базе является низкой и из базы может поступить лишь небольшой поток дырок. Вывод, сделанный выше в отношении потока электронов, остается справедливым и для суммарного потока электронов и дырок: большая часть тока течет по коллекторной и меньшая-по базовой цепи.
Какую же пользу можно извлечь из всего этого? Если изменить напряжение между эмиттером и базой при постоянном напряжении между базой и коллектором, то изменится ток, идущий от эмиттера. Это изменение в большей мере затронет коллекторную цепь и в меньшей -базовую. Таким образом, путем небольшого изменения тока в базовой цепи можно получить значительное изменение тока в коллекторной цепи. В данном случае транзистор работает как усилитель тока. Но так как сопротивление базовой цепи значительно меньше (прямосмещенный р-n-переход) сопротивления коллекторной цепи (обратносмещенный p-n -переход), то и потребляемая в базовой цепи электрическая мощность значительно меньше, чем в коллекторной. В итоге с помощью небольшой электрической мощности в базовой цепи можно управлять величиной мощности в коллекторной цепи.

Сравнение с электронной лампой

Ту же функцию в вакуумной электронике выполняют трех электродные электронные лампы. Эмиттер транзистора соответствует катоду электронной лампы, коллектор-аноду и база-сетке.

лампа триодсхема включения транзистора

Схема включения транзистора, показанная на рис., где эмиттер соединен с базой и коллектором, а база и коллектор-соответственно только с эмиттером, называется схемой с общим эмиттером.

схема включения транзистора ОК ОЭ ОБ

Она является одной из трех возможных схем включения транзистора. Если транзистор включен по схеме с общим коллектором, то коллектор является общей областью для обеих цепей тока, а при включении по схеме с общей базой такой областью становится база.

схема включения транзистора ОК ОЭ ОБ

Схема с питанием входных и выходных цепей транзистора от одного источника постоянного напряжения.

В микроэлектронике применяются также транзисторы, обладающие двумя и более изолированными друг от друга эмиттерными областями. В результате появляются разнообразные варианты схем включения. Существует также возможность получения транзисторов с несколькими коллекторами.
Рис. npn-транзистор с базой, общей для двух цепей. Здесь показаны потоки электронов и дырок, т.е. потоки основных носителей заряда.
С помощью транзисторов можно осуществлять увеличение или преобразование электрической мощности. В микроэлектронике транзисторы являются прежде всего усилительными приборами с различными принципами усиления сигналов электрической природы и используются в ключевых схемах. Важной характеристикой такого транзисторного ключа является время, необходимое для одного переключения из положения «включено» в положение «выключено» или наоборот, короче говоря, время задержки. Чтобы получить представление о величине времени задержки биполярного транзистора, рассмотрим следующий пример. Пусть к эмиттеру, базе и коллектору npn -транзистора приложены определенные электрические напряжения Ue, Ub и Uk. В коллекторной цепи появится ток определенной силы. Если напряжение, приложенное к базе, возрастает до Ub + ΔUb, то сопротивление как левого n-p- перехода, так и правого p-n -перехода уменьшается и в результате ток в коллекторной цепи увеличивается. Но при этом мы полагаем, что во время пролета электронов через базу напряжение на ней остается неизменным и равным UB + ΔUb. Ситуация изменяется, если за это время приложенное к базе напряжение меняется. Когда оно, например, снова уменьшается до UB, а электроны еще не успели проскочить через базу, то вызванное ΔUb возрастание тока в коллекторной цепи не так велико, как при неизменном напряжении Ub + ΔUb. Отсюда можно сделать вывод о том, что эффективность переключения транзистора падает, если команды на переключение в форме более высоких или низких напряжений поступают на базу с интервалами, которые меньше времени, затрачиваемого электронами на пролет через базу. Время задержки Т транзистора представляет собой, таким образом, время, необходимое для пролета электронов через базу. Поэтому становится ясно: чем тоньше база, тем меньше время задержки. Делается понятным и стремление сделать как можно тоньше прежде всего базу. Тем самым мы также доказали высказанное в гл. 2 утверждение, что с уменьшением размеров полупроводниковых электронных элементов их быстродействие возрастает. Ориентировочно время пролета Т сквозь базу инжектированных эмиттером носителей заряда легко определить, зная коэффициент диффузии электронов D и ширину базы Ь. В общем случае справедливо выражение Т ≈ b2/D. Если для кремния ширину базы принять равной 0,7 мкм и коэффициент диффузии электронов 50 см2/с, то время задержки для pnp-транзистора составит Т ≈ 10-10 с. Коэффициент диффузии менее подвижных по сравнению с электронами дырок в кремнии почти в 3 раза меньше. Поэтому и время задержки pnp-транзистора в 3 раза больше, чем у npn-транзистора. Еще более высокой подвижностью по сравнению с электронами кремния обладают электроны арсенида галлия (GaAs). Поэтому из арсенида галлия n-типа можно изготавливать сверхбыстродействующие рпр-транзисторы.
Итак, теперь мы в состоянии рассчитать требуемую энергию для выполнения одной операции переключения в npn-транзисторе. Необходимое на одно переключение время Т следует умножить на израсходованную при этом электрическую мощность Р. В биполярном транзисторе преобразование электрической мощности осуществляется в базовой цепи. Вообще мощность равна произведению напряжения на силу тока. В нашем конкретном примере сила тока зависит от величины транзистора. Чем меньше транзистор, тем слабее возникающие в нем токи. В интегральных микросхемах транзисторы размещаются на площади 1000 мкм2 и менее. Сила тока в базовой цепи составляет всего несколько микроампер, а напряжение - около 1 В. Следовательно, мощность, необходимая для переключения, равна произведению одного вольта на несколько микроампер, т. е. нескольким микроваттам. При Р=10-5 Вт и Т = 10"10 с получаем энергию переключения, равную 10-5 х 10-10 Вт.с=10-15 Дж. Это очень малая энергия, которая, однако, не имеет ничего общего с действительным энергопотреблением транзистора. Энергозатраты в коллекторной цепи гораздо выше.